Professeurs responsables

Belkacem Chikhaoui

Neila Mezghani

Objectifs

Contenu

Introduction à la science des données. Notions de base du langage R. Inférence statistique dans R. Analyse exploratoire des données. Algorithmes de base en apprentissage machine. Exemples d'application de la science des données dans les domaines des réseaux sociaux, de l'environnement et de l'intelligence d'affaires. Visualisation. Science de données et considérations éthiques.

Matériel didactique

Le matériel didactique est accessible sur le site Web du cours.

Liste des documents expédiés

Renseignements technologiques

Le cours nécessite un accès à Internet.

La configuration minimale d'un ordinateur personnel pour suivre le cours est la suivante :

Encadrement

L'encadrement est individualisé et assuré par des professeurs ou une personne tutrice. Les communications se font par téléphone ou par courriel.

Évaluation

L'évaluation repose sur huit quiz (50 %) et un examen maison (50 %).

Échelle de conversion

NotationValeur numériqueValeur en pourcentage
A+4,396 à 100 %
A492 à 95 %
A-3,788 à 91 %
B+3,384 à 87 %
B380 à 83 %
B-2,776 à 79 %
C+2,372 à 75 %
C268 à 71 %
C-1,764 à 67 %
D+1,360 à 63 %
D150 à 59 %
E00 à 49 %

* Échelle de conversion actuellement en vigueur pour ce cours.